Cavitation limits on tidal turbine performance
نویسندگان
چکیده
منابع مشابه
The effect of tidal flow directionality on tidal turbine performance characteristics
With many Tidal Energy Conversion (TEC) devices at full scale prototype stage there are two distinct design groups for Horizontal Axis Tidal Turbines (HATTs). Devices with a yaw mechanism allowing the turbine to always face into the flow, and devices with blades that can rotate through 180 to harness a strongly bi-directional flow. As marine turbine technology verges on the realm of economic vi...
متن کاملHarnessing Tidal Energy Using Vertical Axis Tidal Turbine
An overview of the current design practices in the field of Renewable Energy (RE) is presented; also paper delineates the background to the development of unique and novel techniques for power generation using the kinetic energy of tidal streams and other marine currents. Also this study focuses only on vertical axis tidal turbine. Tidal stream devices have been developed as an alternative meth...
متن کاملThe Influence of Solidity on the Performance Characteristics of a Tidal Stream Turbine
The performance characteristics of a tidal stream turbine are critical when assessing its economical viability. The solidity of the rotor, which is a function of the blade chord length and the number of blades, will affect the performance characteristics, from both a power output and a structural
متن کاملWave–current interaction effects on tidal stream turbine performance and loading characteristics
The transient interaction between tidal currents and the rotation of a horizontal axis turbine rotor have the potential to induce high asymmetric loadings, which are subsequently transmitted to the drive shaft and potentially high speed drive train components. To mitigate the potential for early component failure, analysis of asymmetric loading on marine turbines is fundamental to the design pr...
متن کاملNumerical Study on Self-Starting Performance of Darrieus Vertical Axis Turbine for Tidal Stream Energy Conversion
Self-starting performance is a key factor in the evaluation of a Darrieus straight-bladed vertical axis turbine. Most traditional studies have analyzed the turbine’s self-starting capability using the experimental and numerical data of the forced rotation. A 2D numerical model based on the computational fluid dynamics (CFD) software ANSYS-Fluent was developed to simulate the self-starting proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ocean Engineering
سال: 2018
ISSN: 0029-8018
DOI: 10.1016/j.oceaneng.2018.01.060